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 Maximum points Aver. Points scored 

Question 1 10 4.9 

Question 2 15 6.5 

Question 3 10 7.5 

Question 4 10 4.9 

Question 5 15 9.2 

Total 60 31 

 
Grade = 1 + 9 x (score/max score). 

 

Aver. Grade: 5.6 
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General remarks: 

- Forgetting the vector sign (which is a mistake per se) leads to even more mistakes when 

calculating cross-products. 

- You should express your answers in the original variables given!  
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Question 1.  (10 points) 

The upper part of the figure shows reflection of an 

electromagnetic wave at an interface between two materials 

with refractive indices 𝑛0 and 𝑛2 under normal incidence 

(𝜇1 = 𝜇2 = 𝜇0). A thin layer of material with refractive index 

𝑛1 (shown in green) is applied upon the surface of the 𝑛2 

material (the lower part of the figure). The wave now reflects 

twice: once from the surface between the 𝑛0-material and the 

thin layer (reflection coefficient 𝑅01), and once from the 

layer-to-𝑛2-material interface (reflection coefficient 𝑅02). 

1. Show that the optimal refractive index 𝑛1 of the layer (for 

given 𝑛0 and 𝑛2) that minimizes the double-reflection 𝑅01 + 𝑅02, is 𝑛1 = √𝑛0𝑛2.  

Tip: upon derivation, consider reflection coefficients for amplitudes of electric fields rather 

than for intensities of the waves (i.e. √𝑅 instead of 𝑅). Also consider the transmission 

coefficient at the 𝑛0 ↔ 𝑛1 interface as 𝑇01 ≅ 1, i.e. do not include multiple reflections. (5 

points) 

2. What is the optimal refraction index 𝑛1 for the visible light and the air (𝑛0 = 1) to glass 

(𝑛2 = 1.5) interface? (1 point) 

3. Calculate the value of the total reflection coefficient 𝑅 = 𝑅01 + 𝑅02 for the system 

air+layer+glass (now for intensities). Did you manage to reduce reflection as compared to the 

air+glass system, and if so, by which factor? (2 points) 

4. Now calculate the transmission of both air+layer+glass and air+glass systems. Which one 

is higher? (2 points) 

Tip: Such a layer is called an “antireflection coating” not for nothing! 

 

Answers to question 1 (10 points)  

𝟏. �̃�0𝑅

(0−1)
=

𝑛0 − 𝑛1

𝑛0 + 𝑛1
�̃�0𝐼

;  �̃�0𝑅

(1−2)
=

𝑛1 − 𝑛2

𝑛1 + 𝑛2
�̃�0𝐼

 

Sum of the two reflections: 
�̃�0𝑅

(0−1)

�̃�0𝐼

+
�̃�0𝑅

(1−2)

�̃�0𝐼

=
𝑛0 − 𝑛1

𝑛0 + 𝑛1
+

𝑛1 − 𝑛2

𝑛1 + 𝑛2
  (1 point) 

Calculating the derivative with respect to 𝑛1 and equalizing it to zero: 

−(𝑛0 + 𝑛1) − (𝑛0 − 𝑛1)

(𝑛0 + 𝑛1)2
+

(𝑛1 + 𝑛2) − (𝑛1 − 𝑛2)

(𝑛1 + 𝑛2)2
= 2

−𝑛0

(𝑛0 + 𝑛1)2
+ 2

𝑛2

(𝑛1 + 𝑛2)2
= 0 

(2 points) 

−𝑛0𝑛1
2 − 2𝑛0𝑛1𝑛2 − 𝑛0𝑛2

2 + 𝑛2𝑛0
2 + 2𝑛2𝑛0𝑛1 + 𝑛2𝑛1

2 = 0 (1 point) 

𝑛1
2(−𝑛0 + 𝑛2) = 𝑛0𝑛2(𝑛2 − 𝑛0);  𝑛1 = √𝑛0𝑛2  (1 point) 

𝟐. 𝑛1 = √1.5 = 1.22  (1 point) 

𝟑.𝑅01 = (
1 − 1.22

1 + 1.22
)
2

= 0.0099; 𝑅02 = (
1.22 − 1.5

1.22 + 1.5
)
2

= 0.011;  𝑅 = 𝑅01 + 𝑅02 ≅ 0.02 

(1 point) 

As the direct reflection at the air-glass interface amounts to 0.04, there is a factor of 2 

reduction in reflectivity. (1 point) 

𝟒. 𝑇 = 1 − 𝑅 because the total energy must be concerved  (1 point) 
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Transmission air+layer+glass 0.98; transmission air+glass 0.96 so that the transmission 

air+layer+glass is enhanced! (1 point) 

 

Typical mistakes: 

Q1.1. Taking the two reflectances to be equal for some unknown reason 

Q1.4. Adding T coefficients so that T>1, which is clearly impossible by definition 

Q1. Luck of understanding where you can use the approximation T01 ≅ 1, (i.e. do not include 

multiple reflections) and where you cannot (T = 1 − R because otherwise your answer doesn' 

t make sense) 

 

Notes: 

1. Lord Rayleigh discovered this phenomenon in 1886 as he noticed that a thin layer (such as 

water) on the surface of glass can reduce the reflectivity of the visible light. 

2. The actual working principle also includes the effect of interference which you could have 

accounted for if you explicitly considered propagation of the wave forward to and back from 

the 𝑛1−𝑛2 interface and then calculated the total reflection as ∝ |𝐸01 + 𝐸02|
2 (spoiler: the 

wave reflected from the second interface gains a “phase” factor of exp(2𝑖𝑘1𝑑), where 𝑑 is the 

layer thickness). In this case, you can achieve zero reflection for a certain wavelength – but let 

us leave this for the Waves and Optics course. 

3. Unfortunately, no technologically relevant material has the desired refractive index so that 

magnesium fluoride (MgF2) is often used for such a layer even though its index is 𝑛2 = 1.38. 

You can calculate yourself if you manage to reduce the refraction loses and by what factor. 

4. Those of you who wear glasses, can see such a layer if you look at the lenses at grazing 

incidence: they are slightly coloured (typically, bluish). This results from interference caused 

by the antireflection layer(s). 

5. Magnesium fluoride is also hard-wearing so that it automatically provides an anti-scratch 

coating for plastic lenses (as e.g. in ordinary glasses). 
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Question 2. (15 points) 

A piece of wire bent into a loop, as shown in the figure, 

carries a current that increases linearly with time: 

𝐼 = 𝑘𝑡  (−∞ < 𝑡 < ∞) 

 

1. Show that the retarded vector potential �⃗⃗�  at the center 

O is  

�⃗⃗� =
𝜇0𝑘𝑡

2𝜋
𝑙𝑛(𝑏/𝑎) �̂�     (7 points) 

Tip 1: don’t forget about retardation! 

Tip 2: you might find useful the expression of 𝑑𝐥  in cylindrical coordinates: 

𝑑𝐥 = 𝑠 𝑑�̂� = 𝑠(− sin𝜑 �̂� + cos𝜑 �̂�) (if 𝑠 = 𝑐𝑜𝑛𝑠𝑡) 

2. Find the electric field �⃗�  at the center. (1 point) 

3. We can’t compute �⃗⃗� = 𝛁 × �⃗⃗�  to get �⃗⃗�  at the center O because we know �⃗⃗�  at one point only 

(the center). Compute �⃗⃗�  at the center O using Jefimenko’s equation for the case 𝑏 = 𝑎. 

(5 points) 

4. Compare your result with the one calculated earlier in the course on basis of the Bio-Savart 

law (Eq.5.41 with 𝑧 = 0). Why are the two results identical despite the fact that the Bio-

Savart law is valid for constant currents while here the current does change in time? (2 points) 

 

 

 

Answers to question 2 (Problem 10.12 modified, 15 points) 

𝟏. �⃗⃗� =
𝜇0

4𝜋
∫

𝐈 (𝑡𝑟)

𝓇
𝑑𝑙 =

𝜇0𝑘

4𝜋
∫

(𝑡 − 𝓇/𝑐)

𝓇
𝑑𝐥 =

𝜇0𝑘

4𝜋
{𝑡 ∫

𝑑𝐥 

𝓇
−

1

𝑐
∫𝑑𝐥 }  (1 point) 

For the complete loop,∮𝑑𝐥 = 0 (1 point) 

Note that this step can be done differently by direct integration of all four segments 

independently. If this is the case, a quarter of this point should be added to each of the four 

integrals below. 

�⃗⃗� =
𝜇0𝑘𝑡

4𝜋
{∫

𝑑𝐥 

𝑎𝐿𝑜𝑜𝑝 𝑎

+ ∫
𝑑𝐥 

𝑏𝐿𝑜𝑜𝑝 𝑏

+ 2 �̂�∫
𝑑𝑥

𝑥

𝑏

𝑎

}  (1 point) 

Loop a (the lower semicircle):  

∫ 𝑑𝐥 
𝐿𝑜𝑜𝑝 𝑎

= 𝑎∫ (− sin 𝜑 �̂� + cos𝜑 �̂�)
0

−𝜋
= 𝑎 (cos𝜑|𝜋

0  �̂� + sin 𝜑|𝜋
0  �̂�) = 2𝑎 �̂�  (2 points)   

The outer semicircle:∫ 𝑑𝐥 
𝐿𝑜𝑜𝑝 𝑏

= 𝑏 cos𝜑|0
𝜋 �̂� = −2𝑏 �̂�  (1 point)    

�⃗⃗� =
𝜇0𝑘𝑡

4𝜋
{
2𝑎

𝑎
−

2𝑏

𝑏
+ 2𝑙𝑛 (

𝑏

𝑎
) } �̂�;  (1 point)  

�⃗⃗� =
𝜇0𝑘𝑡

2𝜋
𝑙𝑛(𝑏/𝑎) �̂� 
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NB: the time in the first line should be retarded time. Curiously enough, this does not 

nesseseraly leads to the wrong answer as the retarded-time integral is zero (the second line 

above) but nonetheless is a mistake. 

𝟐. 𝑉 = 0; �⃗� = −
𝜕�⃗⃗� 

𝜕𝑡
= −

𝜇0𝑘

2𝜋
𝑙𝑛 (

𝑏

𝑎
) �̂�   (1 point) 

3. Similarily to �⃗⃗�  

 �⃗⃗� (𝐫 , 𝑡) =
𝜇0

4𝜋
∫ [

𝐈 (𝐫 ′, 𝑡𝑟)

𝓇2
+

�̇� (𝐫 ′, 𝑡𝑟)

𝑐𝓇
] 𝑑𝑙 × �̂�     

=
𝜇0𝑘

4𝜋
∫[

(𝑡 −
𝓇
𝑐 )

𝓇2
+

1

𝑐𝓇
] 𝑑𝐥 × �̂�  (2 points) 

=
𝜇0𝑘𝑡

4𝜋𝑏
∫  𝑑𝜑 �̂�  (2 points: 1 point for integral, 1 point for the right direction) 

=
𝜇0𝑘𝑡

2𝑏
 �̂� =

𝜇0𝐼(𝑡)

2𝑏
 �̂�  (1 point) 

(5 points in total) 

4. Because the time-derivative of current which linearly change in time, is perfectly 

compensated by retardation for which the Bio-Savert law doesn’t account, either. (2 points) 

 

Typical mistakes: 

Q2.1. Not explicitly calculating at least one of the integrals for the loops: you must 

demonstrate how you arrived at this particular answer.  

Q2.2 Occasionally forgetting the minus signs  

Q2.2 There were also several vector signs on the V. 

Q2.3 Carelessness with vector signs (many cross-products between scalars and vectors). 

Missing vectors, omitting the cross product, or coming up with incorrect quantities to replace 

𝑑𝐥 .  

Q2.3 Some copy-pasted Jefimenko’s equation and stopped there. This does not count of 

course. 

Q2.3 Some took the volume version of Jefimenko’s equation (which is OK) but were not able 

to convert 𝐉  into 𝐈  (we did this at lectures). 
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Question 3.  (10 points) 

A 5G mobile network tower rises to height ℎ = 30 𝑚 above flat horizontal ground (as is the 

case in the Netherlands). At the top is an ideal dipole emitter, which oscillated in the vertical 

direction (this is not exactly accurate but will do for the exam). The network broadcasts from 

this antenna with a total radiated power 𝑃 = 100 𝑊 (that's averaged, of course, over a full 

cycle). Neighbours have complained about potential problems with the Covid-19 virus which 

they attribute to excessive radiation from the 5G tower. However, before setting up the 5G 

tower on fire, they hired you to assess if the maximum radiation intensity is in compliance 

with the radiation emission level of 1 𝑚𝑊/𝑐𝑚2 (it is apparently very responsible 

neighbourhood).  

 

1. In terms of the variables given, show that the intensity of the radiation at ground level, at a 

distance R from the base of the tower is 

𝐼(𝑅) =
3𝑃

8𝜋

𝑅2

(𝑅2 + ℎ2)2
 

(As usual, you may assume that 𝑑 ≪ 𝜆 ≪ 𝑟. We are also interested only in the magnitude of 

the radiation, not in its direction – when measurements are taken, the detector will be aimed 

directly at the antenna.) (4 points) 

2. How far from the base of the tower should you have made the measurement? First explain 

your reasoning without calculations. (1 point) 

3. Now provide a formula of a distance from the base of the tower at which you made the 

measurement. (2 points) 

4. What is the formula for the intensity at this location? (1 point) 

5. Is the radio emission of the tower in compliance? Provide the numbers to prove your 

answer. (2 points) 

 

Answers to question 3 (Problem 11.23 modified, 10 points)  

𝟏. 𝐈 = ⟨𝐒 ⟩ =
𝜇0𝑝0

2𝜔4

32𝜋2𝑐
(
𝑠𝑖𝑛2𝜃

𝑟2
) �̂�    (1 point) 

sin 𝜃 =
𝑅

𝑟
; 𝑟 = √𝑅2 + ℎ2;  𝐈 =

𝜇0𝑝0
2𝜔4

32𝜋2𝑐

𝑅2

(𝑅2 + ℎ2)2
�̂�  (2 points)  

The total radiated power 𝑃 =
𝜇0𝑝0

2𝜔4

12𝜋𝑐
   (1 point) 

𝐼(𝑅) =
12𝑃

32𝜋

𝑅2

(𝑅2 + ℎ2)2
=

3𝑃

8𝜋

𝑅2

(𝑅2 + ℎ2)2
 

 

2. The intensity just below the antenna is zero (𝜃 = 0 -- dipoles do not emit into the direction 

of their oscillation); the intensity is also low at 𝜃~90° because the distance is too large. 

Therefore, there should be a maximum. (1 point) 

 

𝟑.
𝑑𝐼

𝑑𝑅
=

3𝑃

8𝜋

2𝑅(𝑅2 + ℎ2)2 − 𝑅22(𝑅2 + ℎ2)2𝑅

(𝑅2 + ℎ2)4
=

3𝑃

8𝜋

𝑅

(𝑅2 + ℎ2)3
(𝑅2 + ℎ2 − 2𝑅2) = 0   

𝑅 = ℎ (2 points) 
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𝟒. 𝐼𝑚𝑎𝑥 =
3𝑃

8𝜋

ℎ2

(ℎ2 + ℎ2)2
=

3𝑃

32𝜋ℎ2
    (1 point) 

 

𝟓. 𝐼𝑚𝑎𝑥 =
3 ∙ 100

32𝜋(30)2
= 3.3 ∙ 10−3 𝑊 𝑚2⁄ = 3.3 ∙ 10−4

𝑚𝑊

𝑐𝑚2
  (1 point) 

Yes, the radiation emission level is well in compliance. (1 point) 

 

Typical mistakes: 

Q3.2-3 Coming out of the blue with 45 degrees without any explanation. Note that a 

reasoning as “it should not be 0 degree nor 90 so must be 45” is not correct in general. 

Q3.4: Making calculation errors: forgetting the factor 2, forgetting to square the factor 2, 

dividing out the h^2’s entirely etc. However, if the error was minor (just a factor difference), 

we did not subtract points. 

Q3.5: Doing incorrect unit conversions: e.g. dividing when going from 1/m^2 to 1/cm^2. 
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Question 4 (10 points) 

The figure shows a schematic diagram of 

velocity selector, a device that allows a charged 

particle to pass through two coaxial (i.e. laying 

at the same axis) openings only if it has a 

specific velocity 𝑣 which vector is also coaxial 

with the two openings. In the laboratory (box) 

system of coordinates, electric and magnetic 

fields are uniform inside the box and point into 

+z and –y directions, respectively. An ion with 

positive charge moves through the box in the +x 

direction with speed 𝑣. Gravity can be 

neglected. 

1. Find electric and magnetic fields in the system of coordinates moving together with the 

charge. (4 points) 

2. In the charge system of coordinates (i.e. if the observer sits on the ion), what are the 

components (electric or/and magnetic) of the Lorentz force that are exerted upon the charge? 

(1 points) 

3. In the charge system of coordinates, what are requirements to the electric and magnetic 

fields to ensure the straightforward movement of the charge? (2 points) 

4. Now we are back to the laboratory system. What are the components (electric or/and 

magnetic) of the Lorentz force that are exerted upon the charge? (1 point) 

5. In the laboratory system, what are requirements to the electric and magnetic fields to ensure 

the straightforward movement of the charge? Explain why your answer makes sense. 

(2 points) 

 

Answers to Question 4 

𝟏. �⃗� = (0,0, 𝐸𝑧); �⃗⃗� = (0,−𝐵𝑦, 0) 

�̅�𝑥 = 0𝑥;  �̅�𝑦 = 𝛾(0𝑦 − 𝑣0𝑧);      �̅�𝑧 = 𝛾(𝐸𝑧 − 𝑣𝐵𝑦) 

�̅�𝑥 = 0𝑥;  �̅�𝑦 = 𝛾 (−𝐵𝑦 +
𝑣

𝑐2
𝐸𝑧) ;  �̅�𝑧 = 𝛾 (𝐵𝑧 −

𝑣

𝑐2
0𝑦) 

�⃗̅� = (0,0, 𝛾(𝐸𝑧 − 𝑣𝐵𝑦)) ; �⃗⃗̅� = (0,−𝛾𝐵𝑦 + 𝛾
𝑣

𝑐2
𝐸𝑧 , 0) 

(4 points in total) 

𝟐. �̅� = 𝑞 (�⃗̅� + �⃗̅� × �⃗⃗̅� ) 

In the charge system, velocity is equal to zero �⃗̅� = 0 so that only electric field component is 

exerted. (1 point) 

3. For the straightforward movement, the total force must be equal zero so that  

�̅� = 𝟎, 𝑜𝑟 𝐸𝑧 − 𝑣𝐵𝑦 = 0, 𝑜𝑟 𝐸𝑧 = 𝑣𝐵𝑦 (2 points) 

𝟒. 𝐅 = 𝑞(�⃗� + �⃗� × �⃗⃗� ) Both components are exerted   (1 point) 

5. The total force must be equal zero so that 𝐸𝑧 = 𝑣𝐵𝑦  (1 point) 

Despite different forces exerted on the charge for two observers, they come to the same 

conclusion.        (1 point) 
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Typical mistakes: 

4.1. Some students wrote �⃗�  and �⃗⃗�  as oscillating fields as if it were some EM wave. Of xourse, 

there is no EM wave involved in this problem at all. 

4.1. To find the electric and magnetic field in the frame of the ion, Example 10.4 was used. 

However, this describes the electric field of a uniformly moving charge while in the problem, 

we are asked to find the E and B fields acting on the moving ion. Therefore, we should use 

Eq. 12.109 to transform from the lab frame to the ion rest frame. 

4.2. Sitting on the ion implies that �⃗̅� = 0 in that frame, which was missed by some students. 
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Question 5. (15 points)  

Consider a very long solenoid of radius 𝑎, with n 

turns per unit length, carries a current 𝐼𝑠 running 

anticlockwise as seen from the positive z direction 

(see the figure). Coaxial with the solenoid, at radius 

𝑏 ≫ 𝑎, is a circular ring of wire, with resistance 𝑅. 

The current in the solenoid is (gradually) decreased. 

1. Show that the electric field right outside the solenoid is given as  

�⃗� = −
𝜇0𝑎𝑛

2

𝑑𝐼𝑠
𝑑𝑡

 �̂�  (5 points) 

2. Show that the magnetic field produced by the ring along its axis at a distance 𝑧 from the 

center is given as  

�⃗⃗� = −
𝜇0

2𝜋𝑎2𝑛

2𝑅

𝑑𝐼𝑠
𝑑𝑡

𝑏2

(𝑏2 + 𝑧2)3/2
�̂�    (2 points) 

Tip: Use the following formula for the magnetic field along the axis of the ring at the distance 

𝑧 from the center (see Formula sheet or Eq.5.41): 

�⃗⃗� =
𝜇0𝐼𝑟
2

𝑏2

(𝑏2 + 𝑧2)3/2
�̂� 

3. Calculate the Poynting vector just outside the solenoid. Assume that the electric field �⃗�  is 

due to the changing flux in the solenoid while the magnetic field �⃗⃗�  is due to the current in the 

ring 𝐼𝑟. As 𝑏 ≫ 𝑎, approximate the latter by its value along the axis. (2 points) 

4. Calculate the power by integrating the Poynting vector over the entire surface of the 

solenoid. (4 points) 

5. Now express your result is terms of the current in the ring 𝐼𝑟 and its resistance 𝑅. Does your 

result make any sense? Explain why. (2 points) 

 

Answers to question 5 (Problem 8.13 modified, 15 points)  

𝟏.∮ �⃗� ∙ 𝑑𝒍 = −
𝑑Φ

𝑑𝑡
 (1 point)   

𝑑Φ

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐵 𝜋𝑎2) = 𝜋𝑎2

𝑑

𝑑𝑡
(𝜇0𝑛𝐼𝑠) = 𝜋𝑎2𝜇0𝑛

𝑑𝐼𝑠
𝑑𝑡

   (2 points) 

The direction of �⃗�  is circumferential because �⃗⃗�  is along the axis of the solenoid (1 point) 

𝐸 2𝜋𝑎 = −𝜋𝑎2𝜇0𝑛
𝑑𝐼𝑠
𝑑𝑡

  (1 point)   

�⃗� = −
𝜇0𝑎𝑛

2

𝑑𝐼𝑠
𝑑𝑡

 �̂� 

(5 points in total) 

𝟐.  �⃗⃗� =
𝜇0𝐼𝑟
2

𝑏2

(𝑏2 + 𝑧2)3/2
�̂� 

𝐼𝑟 =
ℰ

𝑅
= −

1

𝑅

𝑑Φ

𝑑𝑡
= −

𝜇0𝜋𝑎2𝑛

𝑅

𝑑𝐼𝑠
𝑑𝑡

      (2 points) 

�⃗⃗� = −
𝜇0

2𝜋𝑎2𝑛

2𝑅

𝑑𝐼𝑠
𝑑𝑡

𝑏2

(𝑏2 + 𝑧2)3/2
�̂� 
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𝟑. 𝐒 =
1

𝜇0

(�⃗� × �⃗⃗� ) =
1

𝜇0
(−

𝜇0𝑎𝑛

2

𝑑𝐼𝑠
𝑑𝑡

)(−
𝜇0

2𝜋𝑎2𝑛

2𝑅

𝑑𝐼𝑠
𝑑𝑡

𝑏2

(𝑏2 + 𝑧2)
3
2

) (�̂� × �̂�) (1 point) 

=
𝜇0

2𝜋𝑎3𝑛2

4𝑅
(
𝑑𝐼𝑠
𝑑𝑡

)
2 𝑏2

(𝑏2 + 𝑧2)3/2
�̂� (1 point) 

(2 points in total) 

𝟒. 𝑃 = ∫𝐒 ∙ 𝑑�⃗� = ∫ 𝑆 2𝜋𝑎 𝑑𝑧
∞

−∞

 (1 point) 

=
𝜇0

2𝜋2𝑎4𝑛2𝑏2

2𝑅
(
𝑑𝐼𝑠
𝑑𝑡

)
2

∫
1

(𝑏2 + 𝑧2)
3
2

 𝑑𝑧
∞

−∞

 (1 point) 

=
𝜇0

2𝜋2𝑎4𝑛2𝑏2

2𝑅
(
𝑑𝐼𝑠
𝑑𝑡

)
2 2

𝑏2
=

𝜇0
2𝜋2𝑎4𝑛2

𝑅
(
𝑑𝐼𝑠
𝑑𝑡

)
2

  (2 points) 

(4 points in total) 

𝟓.  𝑃 = 𝑅 (
𝜇0𝜋𝑎2𝑛

𝑅

𝑑𝐼𝑠
𝑑𝑡

)

2

= 𝑅𝐼𝑟
2 (1 point) 

It is identical to the one predicted by Joule’s heating low because of energy conservation law. 

(1 point) 

 

Typical mistakes: 

5. Some wrote 𝐼 interchangeably with 𝐼𝑟, which makes the further solution a mess 

5.3. 𝑑2𝐼𝑠/𝑑𝑡2is not equal to (𝑑𝐼𝑠/𝑑𝑡)2 ! 
5.3. Missing the unit vector for the direction, or adding the one one where it shouldn’t be 

there (e.g., 𝑆 ⋅ 𝑑 𝑎  is a scalar),  

5.4 While integrating 𝑃 =  ∫ 𝐒 ∙ 𝑑�⃗� , ignore the z-dependence in S, or that the integral goes 

over dz. Instead of doing the integration, the expression was multiplied by the area, 

introducing a height for the solenoid in the process.  

 

 

 

 


